
Syntactic macros
in Python

Colorless green ideas sleep furiously

— , American linguisticNoam Chomsky

https://en.wikipedia.org/wiki/Colorless_green_ideas_sleep_furiously

What are macros?

Traditionally, macros are substitutions of fragments of the source

code by some transformation of themselves.

This substitution is called macro-expansion and its performed by the

compiler in a previous pass before compiling the actual code.

There are several forms of macros, probably most famous are text

substitution macros in which a preprocessor search and replace

specific text sequences.

Basic C macro

#define TRUE 1
int isamacro = TRUE; // becomes isamacro = 1

Parametrized C macro

#define max(x, y) ((x) > (y) ? (x) : (y))
int maximum = max(5+1, v);
// becomes ((5+1) > (v) ? (5+1) : (v))

For-in iteration protocol

#define for_in(T, v, c) \
for (iter<T> v = c.iter(); v; v = v.next())

for_in(int, n, intarray) {
 printf("Double of %d is %d", *n, *n * 2);
}
/* becomes
for (iter<int> n = intarray.iter(); n; n = n.next()) {
 printf("Double of %d is %d", *n, *n * 2);
}
*/

Text preprocessors knows nothing about the structure of the source

code is replacing.

But syntactic macros does...

What are syntactic macros?

They are transformations of the syntactic tree. The macro is actually

a function taking an AST as input and returning another AST as

expansion.

Basic LISP macro

(defmacro when (test exp . rest)
 ̀(if ,test
 (progn ,exp . ,rest)))

(when nil (display "Launching missiles!\n"))
;; Expand to
;; (if nil
;; (progn (display "Launching missiles!\n")))

Proposal for Python log macro

log[people[7].name]
Expands to print('people[7].name:', people[7].name)

With sintactic macros we can abuse the language syntax and provide

new pragmatics. I.e. create new meaning.

Proposal for Python customliterals macro

Runtime error: ̀AttributeError: __exit__̀
with customliterals:
 tuple is point
 print((0,0).distance((1,1)))

'''Expands to:
print(point((0,0)).distance(point((1,1))))
'''

But syntactic macros per se does not allow to extend the language.

The source code must be recognized as a valid AST before expansion.

The d (dice roll) operator

roll = 5 d 6
would expand in (randint(1, 6+1) for n in range(5))
Pre-runtime error: ̀SyntaxError: invalid syntax̀

Would not be cool to use Python to expand Python?

macropy
lihaoyi/macropy

https://github.com/lihaoyi/macropy

A macro expander in import-time.

A complete library with lots of useful macros.

An authoring framework for creating new macros.

Works with CPtyhon 2.7.2, PyPy 2.0

Partial support in Python 3.x

Install & basic setup

pip2 install macropy

run.py
import macropy.activate # important!
import myprogram.py

myprogram.py
from mymacros import macros, ...
'''Do something with macros...'''

mymacros.py
from macropy.core.macros import *
macros = Macros() # important!
'''Define macros here'''

Or in the Python console, instead of ̀activatè
import macropy.console

The Case macro

from macropy.case_classes import macros, case

@case
class Point(x, y): pass

p = Point(1, 2)
print str(p) # Point(1, 2)
print p.x # 1
print p.y # 2
print Point(1, 2) == Point(1, 2) # True
x, y = p
print x, y # 1 2

Advanced topics about in the docs.case classes

https://github.com/lihaoyi/macropy#case-classes

The Quick Lambda macro

from macropy.quick_lambda import macros, f, _

print map(f[_ + 1], [1, 2, 3]) # [2, 3, 4]
print reduce(f[_ * _], [1, 2, 3]) # 6

More about in the documentation.quick lambdas

https://github.com/lihaoyi/macropy#quick-lambdas

The show_expanded macro

from macropy.case_classes import macros, case
from macropy.tracing import macros, show_expanded

with show_expanded:
 @case
 class Point(x, y): pass

More introspection utilities as in the docs.show_expanded

https://github.com/lihaoyi/macropy#show_expanded

And tons of more features:

, & macros.

MacroPEG .

Experimental & .

PINQ, in Python.

 & snippets.

And ...

Lazy String Interpolation Tracing

Parser Combinator

pattern matching tail-call optimization

SQL integration

Pyxl JS

even more

https://github.com/lihaoyi/macropy#lazy
https://github.com/lihaoyi/macropy#string-interpolation
https://github.com/lihaoyi/macropy#tracing
https://github.com/lihaoyi/macropy#macropeg-parser-combinators
https://github.com/lihaoyi/macropy#pattern-matching
https://github.com/lihaoyi/macropy#tail-call-optimization
https://github.com/lihaoyi/macropy#pinq-to-sqlalchemy
https://github.com/lihaoyi/macropy#pyxl-snippets
https://github.com/lihaoyi/macropy#js-snippets
https://github.com/lihaoyi/macropy#macropy-103

Writing macros

The macrolog

It's quite similar to write .LISP macros

character = { 'name': 'Iñigo Montoya' }
We want this:
log[character['name']]
...to expand into:
print 'character[\'name\'] ->', character['name']

https://github.com/lihaoyi/macropy#tracing
http://localhost:8000/?print-pdf/

Mark the module as a macro container

from macropy.core.macros import *
macros = Macros()

Use a decorator to specify what kind of use you want for your macro

from macropy.core.macros import *
macros = Macros()

@macros.expr
def log(tree, **kw):
 return tree

Use to build new ASTs avoiding the ugly hygienic quasiquotes AST API

from macropy.core.macros import *
from macropy.core.hquotes import macros, hq, ast, u
macros = Macros()

@macros.expr
def log(tree, **kw):
 label = unparse(tree) + ' ->'
 return hq[eprint(u[label], ast[tree])]

def eprint(label, target): print label, target

https://github.com/lihaoyi/macropy#quasiquotes
https://docs.python.org/3.5/library/ast.html

unparse(tree) is a function returning the Python code for tree.

hq[tree] is a macro that returns the AST for the Python code

needed to build tree but preserving the macro context.

ast[tree] is a macro used only inside hq to insert the AST in tree

as part of the expression in which the ast macro is found.

u[tree] is a macro used only inside hq to insert the AST of the

result of evaluating tree in the macro context in the expression

where the u macro is found. Only are supported.built-in types

https://docs.python.org/3.5/library/stdtypes.html

More in the .tutorials section

https://github.com/lihaoyi/macropy#tutorials

How does it work?

macropy intercepts the module when importing it, expand the

AST, and executes the new AST.

importing

New Import Hooks () allows to customize import system.

 relies on finders and loaders.

A searches a module and return a loader for it.

A reads and the module.

That line adds a in charge of expanding the AST

before executing it.

PEP 0302

Import system

finder

loader executes

import macropy.activate

custom finder

https://www.python.org/dev/peps/pep-0302/
https://docs.python.org/3/reference/import.html
https://docs.python.org/3/glossary.html#term-finder
https://docs.python.org/3/glossary.html#term-loader
https://docs.python.org/3/library/functions.html#exec
https://github.com/lihaoyi/macropy/blob/13993ccb08df21a0d63b091dbaae50b9dbb3fe3e/macropy/core/import_hooks.py#L22

expansion I

 function returns the AST for source code.ast.parse()

macropy .looks for nodes representing macros

https://docs.python.org/3.5/library/ast.html#ast.parse
https://github.com/lihaoyi/macropy/blob/13993ccb08df21a0d63b091dbaae50b9dbb3fe3e/macropy/core/import_hooks.py#L42-L60

expansion II

Found nodes are split into macro name and wrapped tree.

The macro function is executed passing the wrapped tree as

parameter.

execution

Now the AST has been expanded, the custom loader executes the

new AST in the module context.

mcpy
delapuente/mcpy

https://github.com/delapuente/mcpy

Focus on expanding macros.

Developed as an study case for learning.

Very small library compared with macropy.

No utilities for authoring.

Show me !da code

https://github.com/delapuente/mcpy/blob/master/demo/run.py

See also

The .

Wikipedia article about macros

Macros: Defining Your Own

expansion code for macropy

https://en.wikipedia.org/wiki/Macro_%28computer_science%29
http://www.gigamonkeys.com/book/macros-defining-your-own.html
https://github.com/lihaoyi/macropy/blob/13993ccb08df21a0d63b091dbaae50b9dbb3fe3e/macropy/core/macros.py#L100

About me

me
Salvador de la Puente González

twitter

My web sites
@salvadelapuente

http://unoyunodiez.com
http://github.com/delapuente

https://twitter.com/salvadelapuente
http://unoyunodiez.com/
http://github.com/delapuente

