Python in the sky
Abstract

• “How we built a *W.I.F.E.* system using Python”
 – *Wireless In-Flight Entertainment*

• Main topics:
 – 1) Product requirements
 – 2) Architecture decisions
 – 3) Atypical challenges
Hi!

• I'm David Arcos

• Python/Django developer since 2008

• Co-organizer of Python Barcelona

• Lead engineer at Immfly
Immfly is a new Entertainment, Retail and Communication platform for the in-flight experience.

Focused on the European domestic flights market, Immfly offers wireless content to passengers via their Personal Electronic Devices.
1) The product requirements
How does it work?

The passenger's device (smartphone/tablet/laptop) connects to the wifi (no internet!) and opens the app (web/android/ios)
What kind of services?
What kind of services?

- Flight information
- View TV Shows, videos
- Read newspapers, magazines
- Get guides, offers, deals
- Etc...
But it's off-line

- Pre-booking a taxi
- Reading today's newspaper
- Downloading a coupon to get 50% off
We need eventual connectivity

• Update the contents
 “I don't want yesterday's newspaper!”

• Send “booking” actions to external APIs

• Do payments

• Send emails
Ground mode
Ground mode

- Keep the experience after landing
- Bring your contents with you
- Get email confirmations
2) The Architecture

- In the airplane:
 - Frontend & Backend
 - System services
 - Hardware

- In the datacenter:
 - The "Hangar"
 - Ingests
Frontend apps

• Web app:
 - Angular
 - Sass
 - Grunt

• Native apps:
 - Android
 - iOS
Backend API

- “A widely used general-purpose, high-level programming language”
- “The web framework for perfectionists with deadlines”
- “A powerful and flexible toolkit that makes it easy to build Web APIs”
HTTP server

- Web Server
- Static contents
- WSGI Server
- Monitor and control:
 - API
 - daemons
 - celery
Databases

- SQL data
 - Django ORM
 - Critical transactions

- NoSQL data
 - Cache, sessions
 - Metrics, expirations
Network

SSH
- Through VPN
- Hidden port
- PK Auth

Ansible
- Deployment
- Config Management
- Pull mode

Fabric
- Initializing
- Other tasks
Hardware
Wireless Access Points

• 3 WAPs per plane

• Provide the WiFi
 – Intranet

• Isolated users
Aircraft Server

- Embedded computer:
 - Hardened, certified, military-grade

- Internal 3G data card
 - Used when grounded

- Avionics bus
 - Read-only!
We have access to this data, in real-time:

- altitude
- flight_id
- ground_speed
- heading
- latitude
- longitude

- mach_speed
- outside_temperature
- pitch
- roll
- wind_speed
- yaw
Discrete-time signals

- DCFAILSIG
- ACFAILSIG
- OVERTEMPSIG
- GSM_POWER_STATUS
- ENB2SIG
- ENB1SIG
- ENB0SIG
- GSMSIG_STATUS
- CPLD_REV0
- CPLD_REV1
- SYSENSIG
- ENB3SIG
- ENB4SIG
- ENB5SIG
- ALERT
- CONFIGSIG0
- CONFIGSIG1
- CONFIGSIG2
- INTTEST_OUT
- INTTEST_IN
- ISO_OUT0
- ISO_OUT1
- ISO_OUT2
- ISO_OUT3
- GPIO_DCFAILSIG
- GPIO_ACFAILSIG
- GPIO_OVERTEMPSIG
- GPIO_SYSENSIG
The Hangar

- Hosted in the Internet
- Central point
- Orchestrates the operations
- Update contents, databases, code...
Resource ingest

- Thousands of resources, from ~20 providers
 - Per language
 - Per country
 - Per category: Videos, Readings, Deals...

- Some external APIs are questionable:
 - Missing SSL, Documentation...
 - Manually updates to an ftp...
 - Data in excel files...
Ingesting videos

- Ingest from SFTP / AWS S3
- Send to AWS ElasticTranscoder
 - Convert to HLS (HTTP Live Streaming)
- Sync chunk by chunk
Ingesting readings

• Ingest from SFTP / AWS S3

• Celery task:
 – Reduce size (image resolution)
 – Generate thumbnails
Ground mode

• Similar to the “Aircraft” mode

• Minor differences:
 – No Videos (we don't have the permissions)
 – More focus on destination offers
 – Online functionality (like “forgot my password”)

• Made to scale
3) Atypical challenges

• Specific perks of working with aircrafts

• Dealing with airplanes has extra challenges

• Problems we weren't expecting beforehand

• Also, “mistakes where made”
Regulations & Certifications

End of 2013, EASA allowed use of PEDs

EASA Safety Information Bulletin

SIB No.: 2013-21
Issued: 09 December 2013

Subject: Use of Portable Electronic Devices during Commercial Air Transport Aircraft Operation
Certificate everything!

• Had to certificate every step
 – The hardware was already certified
 – The WAPs were already certified
 – Lots of wireless tests

• Even the smallest screw has to be certified!

• Took us 6-9 months!
Certificate everything!

- Had to certificate every step
 - The hardware was already certified
 - The WAPs were already certified
 - Lots of wireless tests

- Even the smallest screw has to be certified!

- Took us 6-9 months!
Intermittent connectivity

• We get 30~90m of connectivity per day
 – 10-15 minutes after each flight

• Sometimes, roaming applies
 – Limited synchro

• Improve the deployment tools
• Optimize the performance
Hard shutdown

• Electrical power is suddenly removed, and our airplane server is turned off

• Happens often:
 – When changing power from engine to external, after landing
 – If there is a storm, or just if the pilot wishes

• We could only mitigate...
Mistake: trusted the hardware

• File system corruption
 – The HDD write buffer is sometimes lost
 – Corrupted files
 – `fsck` at start
 – `sync` after each deploy
 – Added several consistency checks (for contents)

• Internal clock corruption
 – Logs showed wrong times
 – Added NTP checks (requires connectivity)
The CAP Theorem

“It's impossible for a distributed system to simultaneously provide all three:”

- **Consistency**
 All nodes see the same data at the same time

- **Availability**
 Guarantee that every request receives a response

- **Partition tolerance**
 Continue to operate despite network partitioning
Big mistake: try to beat the CAP
Settled for “Eventual Consistency”
Recap

• Complex project with lots of features
 – Kept a modular design

• Could implement everything
 – helped by existing Python libraries

• Learned a lot from unexpected challenges
Conclusions

- Python made it possible!
- Very versatile, covers all our use cases
- "We stand on the shoulders of giants"
- Developed in a short time
Thanks for attending!

- Get the slides at http://slideshare.net/DZPM

- We're hiring! http://immfly.com/jobs
Questions?